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Online Nonstochastic Control Versus
Retrospective Cost Adaptive Control

Usman Syed , Yingying Li , and Bin Hu

Abstract—Recently, online optimization methods have
been leveraged to develop the online nonstochastic control
framework which is capable of learning online gradient
perturbation controllers in the presence of nonstochas-
tic adversarial disturbances. Interestingly, using online
optimization for adapting controllers in the presence of
unknown disturbances is not a completely new idea,
and a similar algorithmic framework called Retrospective
Cost Adaptive Control (RCAC) has already appeared in
the controls literature in 2000s. In this letter, we present
the connections between online nonstochastic control
and RCAC, and discuss the different strengths of both
approaches: i.e., RCAC is able to stabilize unknown unsta-
ble plants via the use of target models, while online
nonstochastic control enjoys provably near optimal regret
bounds given a stabilizing policy a priori. We further pro-
pose an integration of these two approaches. We hope that
our insights will help the development of new algorithms
that complement the two approaches.

Index Terms—Online nonstochastic control, retrospec-
tive cost adaptive control (RCAC), online learning.

I. INTRODUCTION

OVER the past decade, online optimization/learning
techniques have achieved great success in numer-

ous sequential decision making tasks including online
portfolio selection, advertisement placement, and web rank-
ing [1], [2], [3]. These methods take full advantage of the
available streaming data, and use regret as a metric for
balancing between exploration and exploitation in the face
of uncertainty. Recently, online optimization methods have
been leveraged to develop the online nonstochastic control
framework [4], [5], [6], [7], [8], [9], [10], [11] which is
capable of learning online gradient perturbation controllers
(GPC) in the presence of unknown nonstochastic disturbances.
For many control applications, the disturbance information is
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not fully known at the control design stage, and such a regret-
based online control framework can provide unique benefits
in addressing the trade-offs between disturbance learning
(exploration) and system control (exploitation). This is in
contrast to H2 optimal control [12], [13], which makes opti-
mistic stochastic assumptions about the disturbances, or H∞
optimal control [14], [15], which makes pessimistic worst-case
assumptions. The connections between online optimization
and nonstochastic control have led to promising developments
in addressing nonstochastic disturbances that are not known a
priori but are learnable in real time.

Interestingly, another online algorithmic framework,
Retrospective Cost Adaptive Control (RCAC), which has been
developed from the control community since 2000s, is based
on a very similar idea [16], [17], [18], [19]. Specifically,
RCAC is based on the idea of “retrospectively optimized
control” [16], [17], and recursively optimizes the policy
parameters in a way that the control performance over the
previous window of operation would have been improved if the
re-optimized policy had been used over that window. Despite
the conceptual similarities, the properties and strengths of
RCAC and online nonstochastic control can be vastly different.
In this letter, we investigate the promise of connecting and
combining RCAC and nonstochastic control. Our paper aims
at bridging this gap via examining the connections and
differences between RCAC and online nonstochastic control.

Our discussions will be based on two key observa-
tions. First, we observe that online nonstochastic control
typically requires either open-loop stable systems or
previously known stabilizing controllers for output feedback
systems [4], [5], [8]. Given stabilizing controllers, online non-
stochastic control can achieve strong theoretical guarantees in
terms of provably sublinear regret bounds. However, stabiliz-
ing unknown linear systems is not a simple task by itself.1

In the setting where there lacks an output-feedback stabilizing
controller in the first place, the online nonstochastic control
framework may not be directly applicable. In contrast, via a
novel use of target models, RCAC is able to stabilize unknown
linear output-feedback systems in many practical settings
without requiring a pre-stabilizing policy. This demonstrates
that the stability issue is not an inherent weakness of online-
optimization-based design philosophy. Second, we observe

1Many learning-based stabilization methods require the assumption of full
state observability [7], [20], [21]. Even in such a setting, stabilization can be
hard [22].
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that it is quite difficult to establish sublinear regret bounds
for RCAC, and directly adapting the theoretical arguments
from online nonstochasic control does not work. The practical
benefits of RCAC come from the use of larger policy classes,
which causes significant difficulties for theoretical analysis.
In light of the above observations, our key contributions are
summarized as follows:

1) We discuss the similarities and differences between
online nonstochastic control (or equivalently GPC) and
RCAC from an algorithmic perspective. We show that
RCAC uses more general policy parameterizations, mak-
ing stabilization plausible. We also explain the special
trick used in RCAC to formulate an online convex
optimization problem under such more general policy
parameterization.

2) We discuss the strengths and weaknesses of the two
methods in relation to each other: RCAC can stabilize
unknown output-feedback linear systems in many prac-
tical settings, while online nonstochastic control enjoys
strong regret guarantees given stabilizing policies known
a priori.

3) We present an integration of RCAC and online non-
stochstic control to achieve the best of both worlds and
compare its performance to H2 and H∞ controllers.

The key difficulty in correlating the two methodologies lies
in the disparate architectures each utilizes. To fully understand
the relationship between these approaches, it is essential
to thoroughly examine the foundational objectives of their
respective control policies, the structure of their cost functions,
and how these control policies are interrelated with their
corresponding cost functions. Here, we want to emphasize that
the purpose of our paper is not to undermine either online
nonstochastic control or RCAC. Rather, we hope that our
insights can help clarify the connections and differences of
online nonstochastic control and RCAC, which potentially will
help the future developments of more powerful algorithms.

II. BACKGROUND

In this section, we briefly review online nonstochastic
control and RCAC. Both methods recursively update policy
parameters in an online manner. For ease of exposition, we
consider a common setting, which addresses the following
linear time-invariant (LTI) system2:

xt+1 = Axt + But + Bwwt

yt = Cxt + vt (1)

where xt ∈ R
nx , ut ∈ R

nu , wt ∈ R
nw , yt ∈ R

ny , vt ∈ R
ny

represent the system’s state, input, disturbance, output, and
measurement noise, respectively.

A. Online Nonstochastic Control With GPC

In [4], [5], [6], [7], [8], [9], [10], [11], online nonstochastic
control was developed to achieve “small” (sublinear) regret,

2RCAC can address more general forms of LTI systems via using the
performance variable zt . We keep zt ≡ yt ∀t for the ease of exposition.

which is defined as

RegretT(A) =
T∑

t=1

lt
(

yAt , uAt
)
− min

π∈K

T∑

t=1

lt
(
yπ

t , uπ
t

)
(2)

where {uAt , yAt } are the inputs and the corresponding outputs
generated by an online control algorithm A, lt is a convex
performance metric that quantifies the policy quality, K is the
policy class where the controller in hindsight belongs to, and
{uπ

t , yπ
t } are generated under any policy π ∈ K. In this letter

we will focus on the GPC method [8], [23], which is the main
algorithm for online nonstochastic control.

GPC will adopt a special policy parameterization to ensure
online convex optimization can be applied. The policy param-
eterization in GPC requires defining the so-called Nature’s y′s
as follows.

Definition 1: Given a sequence of disturbances {wt}t≥1, we
have ynat

t :=∑t−1
i=1 CAi−1Bwwt−i.

Since (1) is linear, we have ynat
t = yt −∑t−1

i=1 G[t−i]ui(assuming x1 = 0), where G[i] := CAi−1B
denotes the i-th Markov parameter of the underlying system. In
practice, only first h Markov parameters are used to compute
ŷnat

t = yt − ∑t−1
i=t−h G[t−i]ui. In this letter, we call h the

simulation window for the GPC algorithm. With the above
definition, we can introduce the GPC policy parameterization.
Specifically, GPC generates control actions via the following
policy parameterization:

ut(M) =
m−1∑

i=0

M[i]ŷnat
t−i (3)

where the matrices M = (M[0], . . . , M[m−1]) are the policy
parameters to be updated in an online manner. Here, the
integer m denotes the control window for GPC. The policy
parameters are updated using the online gradient descent
(OGD) method Mt+1 = �M(Mt − αt∇ft(Mt)), where αt is
the learning rate, �M represents the projection of the iterates
on a norm bounded constraint set M, and ft(Mt) is the online
surrogate (or “ideal”) cost function which is calculated over a
certain cost window W as given below:

ft(Mt) :=
t∑

i=t−W

li(yi(Mt), ui(Mt)). (4)

Here we have yi(Mt) =∑i
j=1

∑m−1
k=0 G[j]M[k]

t ŷnat
t−j−k+ ŷnat

i , and
ui(Mt) is given by (3). On the conceptual level, ft is quantified
on the “ideal” trajectories as if the policy Mt had been used
over the control window. It is important to note that GPC is not
a model free approach, since it requires the information of the
first h Markov parameters, i.e., G[1:h] = [

G[1] G[2] . . . G[h]
]
.

The above formulation actually requires (1) to be stable. If (1)
is unstable, then a stabilizing controller is needed to generate a
closed-loop stable system such that GPC can be applied next.
In this case, the total control input is given by ut = ◦

ut + uex
t

where
◦
ut is the stabilizing policy input and uex

t is the exogenous
policy given by (3). See [8] for a detailed discussion. Recent
work by Chen et al. [7], have sought to overcome the need
of a stabilizing controller in the online nonstochastic control
approach. However, their research is confined to the full state
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feedback scenario and does not encompass the output feedback
setting that is the focus of the current study.

B. Retrospective Cost Adaptive Control (RCAC)

RCAC is based on the concept of retrospectively optimized
control, where past policy parameters are re-optimized in a
way that the control performance over the previous window
of operation would have been improved if the re-optimized
policy had been used over that window. The intuition here is
that a policy that works well over the last window of operation
should also work reasonably well for the next step if the
disturbance pattern has not changed drastically. A large body
of research results on RCAC have been developed in the past
25 years [16], [17], [18], [19]. Interestingly, the concept of
regret is not involved in the developments of RCAC, although
the original version of RCAC in [16] is also just based on
OGD.

Similar to GPC, RCAC will use some control parame-
terization and then do online optimization over the policy
parameters. For an LTI system (1), RCAC generates control
actions based on the following policy parameterization [18]:

ut =
m∑

i=1

P(i)
t ut−i +

m∑

i=1

S(i)
t yt−i. (5)

where m is the length of the control window. We can
clearly see that the RCAC policy parameterization (5) is quite
different from the GPC parameterization (3). As discussed
in the tutorial paper [18], one can rewrite (5) compactly as
ut = φ(t)Tθt where θt is a vector augmented from all the
policy parameters {P(i)

t , S(i)
t }mi=1 (see Equations (6) and (7)

in [18] for formal definitions of {φt, θt}). Conceptually, φ(t)
holds the past input-output data, and θt is the time-varying
policy parameter. RCAC updates θt via optimizing the so-
called retrospective cost Jt(θ̂) defined as follows:

Jt

(
θ̂
)

:=
t∑

i=t−W

ci

(
ẑi, θ̂

)
+

(
θ̂ − θt

)T
Rθ

(
θ̂ − θt

)
(6)

where ci(ẑi, θ̂ ) := ẑ(i, θ̂ )TRzẑ(i, θ̂ ) + (Gf ui)
TRu(Gf ui) with

{Rz, Ru, Rθ } being user-specified weight matrices and ẑ(i, θ̂ )

being the retrospective performance variable given as

ẑ
(

t, θ̂
)
= yt − Gf (q)

(
ut − ût

)
with ût = φ(t)T θ̂ . (7)

Here we just follow the commonly-used notation in the RCAC
literature, and restate [18, eq. (11)] as (7). We emphasize
that Gf (q) is a dynamical system by itself. We acknowledge
that (7) may mix frequency-domain and time-domain notations
in a non-standard way, but such notations have been widely
adopted in the RCAC literature. In the above formulation,
ût = φ(t)T θ̂ is the retrospectively computed input, and Gf is
the so-called target model which can facilitate the removal of
the exact contribution of ut towards yt and replace it with a
new one in the form of ût. Intuitively, (7) can simulate what
happens if the re-optimized policy had been used over the
simulation window with length ĥ.

Early work in [16] used the OGD method to update the
RCAC policy as θt+1 = θt−αt∇Jt(θt). This version of RCAC
is very similar to GPC, despite the differences in the policy
parameterizations and the time-varying cost functions. Over

the years, two other optimization algorithms have been used
for RCAC. The work in [17] uses the online proximal point
method, while the most recent version of RCAC relies on the
recursive least squares (RLS) update law [18], [19].

The target model is a key component that distinguishes
RCAC from GPC. One can choose various target models to
achieve goals such as disturbance rejection and stabilization.
Via choosing the target model smartly, RCAC is capable of
stabilizing unknown LTI systems in many practical settings
[18], [24], given limited amount of information such as the
relative degree,3 the first non-zero Markov parameter of the
system, and the Non-minimum phase (NMP) zeros in case they
exist (this is not completely model-free, but the information
required is quite minimal as claimed in [18]).

III. MAIN RESULTS AND DISCUSSIONS

In this section, we discuss the algorithmic similarities and
differences between RCAC and GPC, clarify the strengths for
each method, and propose an integration to achieve the best
of both worlds.

A. Algorithmic Similarities and Differences

To make the connections between RCAC and GPC trans-
parent, we will examine the first version of RCAC [16], which
uses OGD for updating control policies. As mentioned in
Section II-B, the OGD-based RCAC update in [16] takes the
form of θt+1 = θt − αt∇Jt(θt), which is similar to the OGD-
based GPC update Mt+1 = �M(Mt − αt∇ft(Mt)). Despite
such similarities, the policy parameterizations θt and Mt are
quite different. Due to the difference in policy parameter-
izations, the cost functions Jt and ft are also convexified
differently. Next, we elaborate on these points.

In [16], the system (1) was transformed into an equivalent
μ−ARMARKOV model, where μ is the number of Markov
parameters used to specify the dynamics. Similar to the GPC
setting where h Markov parameters are used to compute ŷnat

t ,
setting μ = h results in the following target model4:

Gf (q) = H0qn−h + H1qn−h + . . .+ Hh−1

qn + B1qn−1 + . . .+ Bn

where q is the forward-shift operator. The parameters Hi
(Markov parameter) and Bi are determined from the LTI
system using system identification tools [25]. Using the above
Gf , this version of RCAC defines ẑ(t, θ̂ ) as:

ẑ
(

t, θ̂
)
= yt − Bzu

(
Ut −�(t)θ̂

)

where Bzu =
[
H0 . . . Hh−1 B1 . . . Bn

]
. Moreover,

Ut and �(t) hold the history of ut and φ(t), respectively.
Similar to the target model, the policy parameterization of this
version of RCAC uses μc−ARMARKOV architecture. Setting
μc = 0 in [16], the policy parameterization becomes ut =∑m

i=1 αc,iut−i +∑m
i=1 Bc,iyt−i, where αc,i and Bc,i are similar

to P(i)
t and S(i)

t defined in Section II-B (and depends on t).

3Relative degree is the difference between the number of poles and number
of zeros in the system.

4Note that setting μ = h for RCAC does not enforce the simulation window
length of RCAC ĥ to be h. Simulation window length of RCAC ĥ still equals
to one.
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Now we can see that the policy parameterization for RCAC is
more general than the policy parameterization for GPC. This
algorithmic difference can be formalized as follows.

Lemma 1: GPC policy parameterization is a special case of
the RCAC policy parameterization.

Proof: The output of (1) can be decomposed as {ynat
t } and

the forced response {yfr
t }. The RCAC policy becomes ut =∑m

i=1 αc,iut−i +∑m
i=1 Bc,iynat

t−i +
∑m

i=1 Bc,iy
fr
t−i, reducing to a

disturbance response policy by setting:

αc,i = −Bc,i

ut−i
yfr

t−i =
−Bc,i

ut−i

h∑

i=1

Ĝ[i]ut−i, i = 1, 2, . . . , m.

This completes the proof.
By choosing more advanced target models, the policy

parameterization of RCAC can become even more general,
allowing the adaptation of the closed-loop poles and making
the stabilization plausible. In contrast, online nonstochastic
control with GPC does not change the closed-loop system
poles during the online optimization process, and hence cannot
stabilize open-loop unstable systems.

The control parameterization for GPC naturally allows for
convex formulations of {ft} [23]. However, even with the more
complicated control parameterizations for RCAC, the resultant
online optimization problem is still convex if we choose ĥ = 1.
Next we explain this point. For the above version of RCAC,
the loss is defined as ct(ẑt, θ̂ ) = 1

2 ẑT(t, θ̂ )ẑ(t, θ̂ ), and the cost
function Jt(θ̂) is given by (6)) using a cost window W. We
can obtain the following result.

Lemma 2: The cost function Jt(θ̂) for RCAC is convex with
respect to θ̂ for ĥ = 1 and non-convex for ĥ > 1.

Proof: Recall from (6), the second term in Jt(θ̂) is a
quadratic function of θ̂ and thus it is convex in θ̂ . Jt(θ̂) will be
a convex function if the ct is convex in θ̂ . In case of RCAC,
ct is a quadratic function of ẑ(i, θ̂ ) and ûi(θ̂). Thus ct will be
convex in θ̂ only if it is linear in θ̂ . Next, we show that this
requirement holds only for ĥ = 1.

Let us first compute ẑ(t, θ̂ ) using ĥ = 1 (re-simulating the
system by removing input applied at iteration t−1 and using a
new input). Without loss of generality, we assume the system
has a relative degree r = 1 and use a Gf = H1

q (the result
holds for any r > 1 and the general target models in [24] as
well). Using (7), ẑ(t, θ̂ ) is given as follows:

ẑ
(

t, θ̂
)
= CAxt−1 + CBwwt−1 + G[1]

m∑

i=1

(
P̂iut−i−1 + Ŝiyt−i−1

)

This shows that ẑ(t, θ̂ ) is linear in the policy parameters P̂ and
Ŝ. Similarly, ût(θ̂) given by (5) is linear in P̂ and Ŝ. Notice
that even though RCAC specializes ct to a quadratic cost, the
linearity of ẑ(t, θ̂ ) in θ̂ allows the use of any cost function ct
which is convex in ẑ(t, θ̂ ) and ût(θ̂). Thus any convex cost
ct(ẑt, ût) will be convex in θ̂ . Extending ẑ(t, θ̂ ) to ĥ = 2 by
substituting ut−i−1 = φ(t − i− 1)θ̂ gives us:

ẑ
(

t, θ̂
)
= CAxt−1 + CBwwt−1 + G[1]

m∑

i=1

Ŝiyt−i−1

+ G[1]
m∑

i,j=1

(
P̂iP̂jut−i−j−1 + P̂iŜjyt−i−j−1

)

Clearly, this shows a nonlinear relation between θ̂ and
ẑ(t, θ̂ ). Thus any cost function Jt(θ̂) convex in ẑt will be non-
convex in the policy parameters θ̂ for any ĥ > 1.

Due to the use of the more general policy parameterizations
in RCAC, we have to choose ĥ = 1 to convexify the
retrospective cost Jt, making it very difficult to connect a regret
bound on Jt to the original loss

∑T
t=1 lt. This is the reason why

the regret arguments for online nonstochastic control cannot be
applied to RCAC. This is even the case when the system state
dimension is 1. In terms of the required modelling information,
both GPC and the above version of RCAC require the same set
of Markov parameters. However, the more recent version of
RCAC has reduced this dependence to only the first non-zero
Markov parameter [18].

B. Clarifications on Strengths of RCAC and GPC

In light of the above discussions, now we clarify the
strengths of RCAC and GPC. The policy parameterization for
GPC allows simple theoretical analysis. However, such policy
parameterization does not change the closed-loop poles, and
hence loses the ability to stabilize an unstable system. In
contrast, the RCAC policy parameterization is more general
and can potentially adapt the closed-loop poles to enable
stabilizing unknown LTI systems. There is a trade-off between
regret guarantees versus stabilizing abilities.

The stabilization property in RCAC comes from the target
model Gf . When applying RCAC to unstable systems, one
can choose Gf := H

qr+np D(q)
where r is the relative degree of

the system, and H is the first non-zero Markov parameter.
Here, D(q) is a polynomial of degree np = m+ n1 specifying
the desired closed loop poles of the system where n1 is the
number of unstable poles of the system. RCAC achieves pole
placement under the assumption of persistent excitation or
alternatively use of a forgetting factor λ ∈ (0, 1]5 with ci(ẑi, θ̂ )

in Jt(θ̂) [19]. RCAC updates Jt(θ̂) in such a way that the
closed-loop poles of the system converges to the poles of D(q),
thereby stabilizing an unstable system. To see this, define
ũt := ut − ût to be the input perturbation then asymptotically
as ẑ(t, θ̂ ) → 0, yt ≈ Gf (q)ũt from (7). Using ut from (5)
with LTI system (1) leads to a closed loop system given by
yt = G̃yũ(q)ũt + G̃yw(q)wt where G̃yũ(q) and G̃yw(q) share
the same set of poles [24]. Thus asymptotically RCAC makes
G̃yũ(q) → Gf (q) and thus achieve system stabilization. GPC
lacks this capability (in addition, so far there does not exist
frequency-domain interpretations for GPC).

RCAC is capable of performing system stabilization, dis-
turbance rejection and reference tracking in many practical
simulations, but it lacks formal guarantees. Even in case
of simple scalar system with full state observation, stability
guarantee is not easily available. In order to highlight this
difficulty, we consider the most basic setting of constant
disturbance rejection: xt+1 = axt + ut +w; stable system with
|a| < 1 and w ∈ R. Jt(θ̂) = ẑ(t, θ̂ )T ẑ(t, θ̂ ) and RCAC policy
ut = Ptut−1+ Stxt−1 is updated by the OGD update rule. The
equilibrium point for this system is given by (x∗, u∗, P∗, S∗) =
(0,−w, 1,R). It is easy to verify that S∗ is dependent on

5Here, we assume λ = 1 for simplicity.
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Fig. 1. Cost comparison of RCAC and GPC algorithms for LTI systems
under time varying disturbance sequences. In (a) we show a magnified
view for RCAC.

the initial condition of the system and it will be different
for each trial of this system, thus highlighting the difficulty
of establishing even local stability guarantees for RCAC.
In contrast, GPC enjoys strong regret guarantees as shown
in [23], i.e., GPC can achieve the sublinear regret bound
O(
√

T) under the assumption that ρ(A) < 1. In order to bridge
the strengths of both approaches, we propose an integration in
the next subsection.

C. Integration of GPC and RCAC

Based on the underlying similarities between RCAC and
GPC, it seems natural to consider integration. Let us first
consider two LTI systems as examples to further motivate the
need to integrate the two algorithms. In both examples, we
used the control window m = n, simulation window h = 6, and
cost window W = 1 with a quadratic loss function. Consider
the following system:

xt+1 =
⎡

⎣
2.85 − 2.41 0.85

1 0 0
0 1 0

⎤

⎦xt +
⎡

⎣
1
0
0

⎤

⎦(ut + wt)

yt =
[−1 1.4 − 0.85

]
xt (8)

This system has an unstable pole at z = 1.75 and it is subject
to the disturbance sequence given by wt ∼ N (0, 0.1) for t ∈
[0, 100], wt = 0.5(cos 0.25t + sin(0.5t)) for t ∈ (100, 200],
and wt = 0.1 cos 2t + sin(0.2t)+ w0 for t ∈ (200, 700] where
w0 ∼ N (0, 0.1). Fig. 1(a) performs the cost comparison for
RCAC and GPC algorithms on log scale. Clearly, RCAC can
simultaneously stabilize a system while rejecting disturbance
unlike GPC which is unable to handle such a system. Consider
another example given by:

xt+1 =
[

0.94 − 0.44
1.00 0

]
xt +

[
1
0

]
ut +

[
0
1

]
wt

yt =
[
1 − 0.8

]
xt (9)

We consider a mixed disturbance given by wt = cos 2t + w0
for t ∈ [0, 100], wt = sin 0.2t + w0 for t ∈ (100, 200] and
wt = cos 2t + sin(0.2t) + w0 for t ∈ (200, 700], where w0 ∼

N (0, 0.5) is used for this system. As shown in Fig. 1(b),
GPC achieves a lower cost than RCAC, which reflects its
strength in rejecting adversarial disturbances while minimizing
the tracking cost for stable systems.

The two examples discussed above motivate the need of
a new control policy that can harness the best attributes of

Algorithm 1 RCAC-GPC Algorithm
1: Input: Times steps: t1, N, T , (αt)t≥1, h, m, W, Gf , θ0 = 0,

M0 = 0, excitation signals: (ηi, νi)
N
i=1

/* System stabilization by RCAC */
2: for t = 1, . . . , t1 do
3: Simulate RCAC policy in (5) and update θt using RLS

/* Data Collection for System ID */
4: for t = t1 + 1, . . . , t1 + N do
5: Simulate RCAC policy in (5) for a fixed θt1 with

additional input-output excitation signals (ηt, νt)

/* System Identification */
6: Ĝ[1:h] ← Closed loop system ID with {(ui, yi)}t1+N

i=t1
and

(ηi, νi)
N
i=1 using least square estimation in [26].

/* Online optimal control using RCAC-GPC */
7: for t = t1 + N + 1, . . . , T do
8: Compute RCAC policy

◦
ut using (5) with fixed θt1

9: Compute GPC policy ūt using (3)
10: Simulate ut = ◦

ut + ūt and observe loss lt(yt, ut)

11: Update cost ft(Mt) in (4)
12: Update Mt using OGD for ft(Mt)

the two algorithms. A natural idea is to synthesize a control
policy that uses GPC for disturbance rejection while using
RCAC for system stabilization. Specifically, we propose to use
a fixed RCAC parameterization as a stabilizing policy while
actively using the OGD in the GPC framework to adapt to
unknown and changing disturbance signals. This way, the two
algorithms not only are seemingly integrated to synthesize
a new control policy, but also aid in estimating the Markov
parameters required in the GPC algorithm. This proposed
framework is summarized in Algorithm 1.

Algorithm 1 follows three main steps. In the first step, it
simulates the system for t1 iterations with RCAC to stabilize
the system and simultaneously update policy parameters. In the
second step, a fixed RCAC policy parameterization from Step
1 is used to identify Markov parameters which are needed for
the next GPC step. In line 6, Ĝ[1:h] := [

Ĝ[1] Ĝ[2] . . . Ĝ[h]
]

are
estimated for the implementation of GPC and RCAC, where
Ĝ[i] is an estimate of G[i]. In the last step, it uses a fixed
RCAC policy to maintain system’s stability while using GPC
to mitigate unknown and changing disturbance signals.

Here, it is important to note that estimating Markov param-
eters is particularly a challenging task if the underlying
system is unstable. In case of stable as well as unstable
systems, RCAC can be seemingly deployed for the Markov
parameter estimation process. Once RCAC successfully sta-
bilizes a system, one can use the framework proposed
by [26] to estimate the required Markov parameters of the
system.

Now, let us revisit the two examples considered above
and use the proposed policy in Algorithm 1 under identi-
cal settings. Fig. 2 (a) shows the location of closed-loop
poles for the system in (8) after 100 iterations of RCAC
in comparison to the desired poles supplied by the target
model Gf . Fig. 2 (b) shows the cost comparison the three
algorithms under identical settings. Clearly, the two algorithms
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Fig. 2. Performance of the RCAC-GPC integrated policy.

Fig. 3. Cost comparison for two different control problems.

complement each another as the resulting closed loop exhibits
superior performance.

IV. EMPIRICAL COMPARISONS

The efficacy of the proposed algorithm is demonstrated by
empirical comparison to H2 and H∞ controllers in addition to
the RCAC and GPC controllers. We consider an example of a
Boeing 747 at an altitude of 40000ft with the speed of 774ft/s
subject to nonstochastic disturbance wt, a setting similar to the
one in [27]. Conventionally, H2 and H∞ control paradigms
are used to address such systems. Therefore, we provide a
comparison to H2 and H∞ controllers in addition to RCAC
and GPC control policies in Fig. 3 (a). The unified algorithm
uses RCAC for the first 200 iterations followed by a fixed
RCAC controller with the GPC for disturbance rejection.

We consider another interesting case where an LTI system
with a NMP zero is subject to a nonstochastic disturbance
signal. The significance of this system stems from the fact that
RCAC requires a priori knowledge of the NMP zero where as
GPC doesn’t need such information.

xt+1 =
⎡

⎣
0.7 − 0.72 0.25
1 0 0
0 1 0

⎤

⎦xt +
⎡

⎣
1
0
0

⎤

⎦(ut + wt)

yt =
[
0 1 − 9.75

]
xt (10)

This system has a relative degree r = 2. The target model
used in this case was Gf (q) = −(q−9)

q2 , an estimated of the
NMP zero is used. As shown in Fig. 3 (b) the integrated
RCAC-GPC policy outperform the other four control policies.
Empirical studies has shown that often times explicit reliance
of RCAC on the information of NMP zeros puts it at a
disadvantage in comparison to GPC and GPC outperform
RCAC in such cases. On the other hand, RCAC-GPC policy in
such cases leads to superior performance in comparison to the

individual policies. These results therefore, demonstrate the
effectiveness of the integrated RCAC-GPC policy in system
stabilization and disturbance rejection.
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