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Abstract

In this paper, we explore the capabilities of state-of-the-art large language models (LLMs) such as

GPT-4, GPT-4o, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, Llama 3, and Llama 3.1 in solving

some selected undergraduate-level transportation engineering problems. We introduce TransportBench,

a benchmark dataset that includes a sample of transportation engineering problems on a wide range of

subjects in the context of planning, design, management, and control of transportation systems. This

dataset is used by human experts to evaluate the capabilities of various commercial and open-sourced

LLMs, especially their accuracy, consistency, and reasoning behaviors, in solving transportation engi-

neering problems. Our comprehensive analysis uncovers the unique strengths and limitations of each

LLM, e.g. our analysis shows the impressive accuracy and some unexpected inconsistent behaviors of

Claude 3.5 Sonnet in solving TransportBench problems. Our study marks a thrilling first step toward

harnessing artificial general intelligence for complex transportation challenges.
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1. Introduction

In recent years, the advent of artificial intelligence has heralded a new era of computational tech-

nology, fundamentally reshaping how we approach problem-solving across diverse domains. Among

these, large language models (LLMs) stand out for their sophisticated ability to understand and generate

human-like text, offering unprecedented opportunities for innovation across various domains including

coding (Nijkamp et al., 2022; Nam et al., 2024; Xu et al., 2022; Chew et al., 2023; MacNeil et al., 2022),

reasoning (Wei et al., 2022b; Huang and Chang, 2022; Zhou et al., 2022; Sun et al., 2023; Havrilla et al.,

2024), planning (Valmeekam et al., 2022, 2024; Zhao et al., 2024; Song et al., 2023; Dagan et al., 2023),

mathematics (Imani et al., 2023; Azerbayev et al., 2023; Frieder et al., 2024; Zhang et al., 2024a; He-

Yueya et al., 2023), and science (Wang et al., 2023; Birhane et al., 2023; Ouyang et al., 2023; Yeadon and

Hardy, 2024; Chen and Deng, 2023). The scientific community, as well as the general public, have been

wondering how soon, if not already, LLMs will be capable of solving complex problems that involve not

only general common knowledge, but also advanced, domain-specific terminologies and analytical skills.

The educators and researchers are also particularly intrigued by (i) how the advancement of LLMs will

impact the future of research, education, and workforce development, and (ii) how the current practice

should be adapted or tailored to best accommodate and take full advantage of the LLMs’ capabilities.

To answer these questions, the first step is to keep track of and understand the development trends of

LLMs with respect to the respective fields of interest, and to identify ways to help LLMs best achieve

their positive potential for societal impacts.

Transportation systems engineering is a critical interdisciplinary subfield of civil engineering, fo-

cusing on developing principles for the planning, design, operations, and management of all modes

of transportation for people and goods (Cascetta, 2009; Fricker and Whitford, 2004). It encompasses

various topics such as transportation economics, driver and vehicle characteristics, guideway geometric
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design, traffic flow and control, planning and demand modeling, utility and modal split, network analysis,

and public transit systems (Daganzo and Ouyang, 2019), and is currently undergoing rapid technology-

driven revolutions (such as autonomy, connectivity, electrification, and shared economy). The problems

in this field combine mathematical foundation with strong engineering, social, and economic principles,

making this field particularly ripe for technological interventions with LLMs, and at the same time, an

ideal benchmark context for assessing the reasoning capabilities of LLMs.

With such a motivation, our paper studies how state-of-the-art LLMs such as GPT-4 (Achiam et al.,

2023), GPT-4o (OpenAI, 2024), Claude 3.5 Sonnet (Anthropic, 2024b), Claude 3 Opus (Anthropic,

2024a), Gemini 1.5 Pro (Team et al., 2023, 2024), Llama 3 (AI@Meta, 2024a), and Llama 3.1 (AI@Meta,

2024b) can be leveraged to tackle undergraduate-level transportation engineering problems, potentially

transforming the landscape of this vital engineering discipline. Understanding such capabilities of LLMs

could signify a substantial leap towards a likely and exciting future of transportation engineering in

which artificial general intelligence is seamlessly equipped with specialized domain-specific human ex-

pertise to enhance productivity and creativity of this engineering field. Our paper first introduces Trans-

portBench, a benchmark dataset specifically designed to encapsulate the essential elements of transporta-

tion engineering. Our TransportBench dataset is designed to cover a wide range of subjects, form the

foundation of our investigation, and enable a structured evaluation of how various LLMs perform in

a domain traditionally dominated by human expertise. TransportBench captures the complexities and

nuances of transportation engineering problems, providing a rigorous testing ground for assessing the

problem-solving abilities of various commercially available and open-sourced LLMs. We present eval-

uations conducted by human experts to evaluate the outputs of these LLM models, focusing on their

accuracy and consistency. These evaluations are critical, as they provide insights not only into the ef-

fectiveness of each model but also into their potential to integrate with existing engineering practices.

Our study also identifies the unique strengths and limitations of each LLM, e.g. our analysis shows both

the impressive overall accuracy and some unexpected inconsistent behaviors of Claude 3.5 Sonnet when

tested on TransportBench. Our contributions can be summarized as follows.

• We introduce an open-source new natural-language dataset called TransportBench, designed to

test the capabilities of LLMs in solving undergraduate transportation system problems.

• We evaluate the accuracy of GPT-4, GPT-4o, Claude 3 Opus, Claude 3.5 Sonnet, Gemini 1.5 Pro,

Llama 3, and Llama 3.1 on TransportBench, conducted by human experts. Our analysis shows

that leading LLMs can achieve promising accuracy on TransportBench, and Claude 3.5 Sonnet

achieves the highest accuracy on TransportBench among all the LLMs.

• We further evaluate the consistency of these LLMs on TransportBench. Interestingly, we observe

that Claude 3.5 Sonnet and Claude 3 Opus give less consistent answers when asked to double

check their own solutions – this suggests a lack of deep conceptual understanding. In contrast,

GPT-4 and GPT-4o give the most consistent responses in such a setting.

• We carefully examine the reasoning behaviors of LLMs on TransportBench by twisting some

problems from TransportBench. This provides the first study of LLM reasoning in the context of

solving basic transportation system problems.

Our study marks a significant step toward harnessing LLMs in the realm of civil engineering. In-

spired by the capabilities of LLMs in transportation engineering, it is exciting to envision a promising

future where transportation systems are dynamically managed, with AI predicting and mitigating traffic

congestion, optimizing maintenance schedules, and even designing next-generation infrastructure with

unparalleled efficiency. It is our hope that our exploration into the intersection of LLMs and transporta-

tion system engineering will set the stage for further research and development, potentially revolutioniz-

ing the way we design, build, and maintain our transportation systems in the future.
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Table 1: Summary of the TransportBench dataset. We report the number of True or False problems, the number

of general Q&A problems, and the total number of problems under each topic.

Topic # of T or F Prob. # of General Q&A Prob. # of Total Prob.

Facts 14 8 22

Transportation economics 0 5 5

Driver characteristics 2 3 5

Vehicle motion 7 4 11

Geometry design 7 3 10

Traffic flow/control 8 7 15

Transportation planning 4 4 8

Utility and modal split 4 2 6

Transportation networks 0 3 3

Public transit systems 27 28 55

Total 73 68 140

Related Work: The relationship between LLMs and transportation engineering only emerged in

the past year or so, but have been discussed in many exploratory papers. The relevance of LLMs in the

realm of Intelligent Transportation Systems (ITS) has been discussed in Shoaib et al. (2023), empha-

sizing their integral role in advancing transportation intelligence, optimizing traffic management, and

designing smart cities. More detailed study on using LLMs for traffic management can be found in

Zhang et al. (2024b). Discussions on potential applications of LLMs in other ITS problems such as

traffic flow prediction, vehicle detection, road condition monitoring, traffic sign recognition, and au-

tonomous vehicles can be found in Khalil et al. (2024). The potential of leveraging (and finetuning)

ChatGPT in smarter traffic safety decision-making and crash narrative analysis has been discussed in

Zheng et al. (2023b,a); Mumtarin et al. (2023). Specifically, TrafficSafetyGPT, finetuned from Llama2

on traffic safety data, is one of the earliest efforts in finetuning LLMs for transportation engineering.

There is also a body of literature on using LLMs for mobility analysis and forecasting (Zhang et al.,

2024c). The potential use of LLMs in interpretation and reasoning tasks related to self-driving has been

studied in Cui et al. (2024). Despite these promising developments on specific topics, there still lacks

a comprehensive benchmark study on the capabilities of LLMs in solving basic transportation system

problems. Our work complements the existing papers by providing such a benchmark study. We conduct

a broader and more thorough evaluation of the strengths/weaknesses of leading LLMs such as GPT-4,

GPT-4o, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, Llama 3, and Llama 3.1 in the context of

transportation engineering.

2. The TransportBench Dataset

We first create a collection of 140 undergraduate problems that span a broad spectrum of topics in-

cluding transportation economics, driver characteristics, vehicle motion, road geometry design, traffic

flow/control, transportation planning, utility/modal split, transportation networks, and public transit sys-

tems. TransportBench consists of both the true or false problems and the general Q&A problems. We

summarize the statistics of our TransportBench dataset for each topic in Table 1.

Human expertise in data creation. All the problems in TransportBench are selected by the sixth author

of this paper based on two of his courses at the University of Illinois: a junior-level introductory course

CEE 310 - Transportation Engineering (taught 14 times) and a senior-level focused course CEE 418 -

Public Transportation Systems (taught 11 times). Those for the first nine topics in Table 1 are twisted

from CEE 310, while those for the last topic “public transit systems" are from CEE 418. Some of the
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CEE 418 problems are twisted from a co-authored textbook (Daganzo and Ouyang, 2019). Any figure(s)

in an original problem are replaced by language descriptions. Together, these problems capture many

key areas of current transportation systems engineering, and provide a reasonable benchmark test for

LLMs. The solutions to most TransportBench problems are prepared by the second author.

Data format. We collect each problem from original documents in PDF files and presentation slides. We

manually transfer these problems into LaTeX format. All the problems are carefully verified by human

annotators to ensure that LaTeX documents can be compiled without any syntax errors. In addition,

we also provide a detailed step-by-step solution for each problem in LaTeX. For ease of evaluations,

we have also provided JSON-formatted files for TransportBench. All the files for our TransportBench

dataset are available at https://agi4engineering.github.io/TransportBench/.

3. Evaluating Accuracy of Leading LLMs on TransportBench

Now we are ready to evaluate the accuracy of leading LLMs such as GPT-4, GPT-4o, Claude 3 Opus,

Claude 3.5 Sonnet, Gemini 1.5 Pro, Llama 3 (70B) and Llama 3.1 (405B) on TransportBench. In this

section, we consider a zero-shot prompting strategy (i.e., directly inputting the question) and examine the

web-version LLM responses through human expert annotation (our analysis does not require using APIs

or local models). The inputs to the web-version LLMs are just the original problem descriptions from

TransportBench. The zero-shot setting is fundamentally important (Kojima et al., 2022) and serves as a

meaningful starting point for our analysis. We first present two examples (i.e. one general Q&A problem

and one True or False problem) to illustrate the zero-shot setting and showcase the capabilities of LLMs

in solving transportation problems. First, consider the following transportation economics problem.

Zero-Shot Setting (General Q&A Problem): Problem 2.5 from TransportBench

Input: Suppose you have one widget plant at the center of a sufficiently large country of size S
mi2, where population is uniformly distributed with a density of δ people/mi2 . The production

cost is $C per unit, and the selling price is $P per unit, and it can sell D widgets per person

per year everywhere in the country. Transportation costs include a fixed cost of F per unit and

a variable cost of $f per widget-mile. Suppose P > C + F . Determine the shape, size and the

total demand of your market.

GPT-4: To solve this problem, we need to determine the region around the widget plant where

it is profitable to sell widgets ... Since P > C + F , we can determine the break-even distance

d where the selling price equals the total cost: P = C + F + fd =⇒ d = P−C−F
f · · · The

size (area) of the market is π
(

P−C−F
f

)2
. The total market demand is δ · π

(

P−C−F
f

)2
·D

Claude 3.5 Sonnet: Let’s approach this problem . . . Let P be the revenue, r is the radius of the

circular market area, and the total cost = C+F + fr . For the market boundary, revenue equals

total cost implies r = (P − C − F )/f . Therefore, the market is a circular area with radius

r = (P − C − F )/f , and the market demand is π
(

P−C−F
f

)2
× δ ×D widgets per year.

Gemini 1.5 Pro: Here’s how we can determine the shape, size, and total demand of the market

under the given conditions: ... Since each person buys D widgets per year, the total demand is:

Total Demand = D ∗ Population = Dδπ[(P − C − F )/f ]2.

For illustrations, the solutions of GPT-4, Claude 3.5 Sonnet, and Gemini 1.5 Pro are provided for the

above question. All three LLMs have clearly identified the “uniformly distributed population" setting

4
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in the problem statement and subsequently assumes the use of Euclidean metric. Furthermore, all the

LLMs correctly model the profitability of the plant and come up the correct size of the market for the

widget plant. For the second example, we consider a True or False problem on geometry design.

Zero-Shot Setting (True or False Problem): Problem 5.1 from TransportBench

Input: In horizontal curve design, for a given design speed, the larger the road radius, the larger

the rate of super-elevation. True or False?

GPT-4: False. In horizontal curve design, the rate of super-elevation actually decreases as the

radius of the curve increases for a given design speed. The rate of super-elevation is used to

counteract the lateral acceleration experienced by a vehicle navigating a curve. A larger radius

means the curve is less sharp, and therefore, the lateral forces are lower, requiring less super-

elevation to maintain vehicle stability and comfort.

Claude 3.5 Sonnet: False. In horizontal curve design, for a given design speed, the relation-

ship between road radius and superelevation rate is actually inverse, not directly proportional.

Here’s a brief explanation: 1. As the radius of a horizontal curve increases, the centrifugal force

acting on a vehicle decreases. This means less superelevation is needed to counteract the force.

2. Conversely, tighter curves (smaller radii) require more superelevation to help vehicles safely

navigate the turn at the design speed. 3. For a given design speed, as you increase the radius of

the curve, you can decrease the rate of superelevation while still maintaining safety and comfort

for drivers. This relationship is fundamental to highway geometric design and is typically repre-

sented in design charts or tables that show the interplay between curve radius, design speed, and

superelevation rate.

Gemini 1.5 Pro: False. In horizontal curve design, the relationship between road radius and

superelevation rate is inverse. This means: Larger radius: Requires a smaller rate of supereleva-

tion. This is because the centrifugal force experienced by a vehicle traveling at a given speed is

lower on a curve with a larger radius. Smaller radius: Requires a larger rate of superelevation to

counteract the increased centrifugal force. The design goal is to provide a comfortable and safe

driving experience by balancing the centrifugal force with the inward tilt of the road surface.

In the above example, all the LLMs have accurately identified the correct relationship between the

road radius, super-elevation, and design speed, and come up the correct conclusion that the original

statement is false. For concreteness, we listed some detailed reasoning provided by LLMs. We can

see that the reasoning from LLMs for this specific question is quite plausible and supports the correct

conclusion well.

Following the above zero-shot setting, we present a comprehensive evaluation of GPT-4, GPT-4o,

Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, Llama 3, and Llama 3.1 on TransportBench. After

receiving the LLM responses, we check the correctness of the LLM answers via human annotation.

For all the problems, we also check the reasoning provided by LLMs. Our main evaluation metric

is Accuracy (ACC), defined as the proportion of instances where the LLMs correctly solve the given

problems. The ACC of GPT-4, GPT-4o, Claude 3 Opus, Claude 3.5 Sonnet, Gemini 1.5 Pro, Llama 3

(70B), and Llama 3.1 (405B) on the TransportBench dataset is reported in Table 2. For simplicity, we

only conduct our analysis on one trial per problem1, and hence there is some inherent randomness in the

ACC obtained. Nevertheless, the results in Table 2 show that leading LLMs such as Claude 3.5 Sonnet,

1When we increase the number of trials per problem, the resultant trend is quite similar. See Table 4 in the next section.
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Table 2: Accuracy (ACC) of GPT-4, GPT-4o, Claude 3 Opus, Gemini 1.5 Pro, Llama 3 and Llama 3.1 on Trans-

portBench. The best results for each topic are highlighted in bold.

Topics GPT-4 GPT-4o Claude 3 Opus Claude 3.5 Sonnet Gemini 1.5 Pro Llama 3 (70B) Llama 3.1 (405B)

Facts 72.7% (16/22) 72.7% (16/22) 68.2% (15/22) 81.8% (18/22) 81.8% (18/22) 68.2% (15/22) 68.2% (15/22)

Transportation economics 20.0% (1/5) 40.0% (2/5) 40.0% (2/5) 40.0% (2/5) 40.0% (2/5) 20.0% (1/5) 40.0% (2/5)

Driver characteristics 100.0% (5/5) 100.0% (5/5) 100.0% (5/5) 100.0% (5/5) 80.0% (4/5) 40.0% (2/5) 100.0% (5/5)

Vehicle motion 63.6% (7/11) 81.8% (9/11) 72.7% (8/11) 90.9% (10/11) 81.8% (9/11) 36.4% (4/11) 63.6% (7/11)

Geometry design 60.0% (6/10) 70.0% (7/10) 70.0% (7/10) 70.0% (7/10) 70.0% (7/10) 60.0% (6/10) 60.0% (6/10)

Traffic flow/control 40.0% (6/15) 46.7% (7/15) 33.3% (5/15) 53.3% (8/15) 53.3% (8/15) 40.0% (6/15) 46.7% (7/15)

Transportation planning 62.5% (5/8) 50.0% (4/8) 50.0% (4/8) 62.5% (5/8) 100.0% (8/8) 50.0% (4/8) 50.0% (4/8)

Utility and modal split 66.7% (4/6) 83.3% (5/6) 66.7% (4/6) 50.0% (3/6) 50.0% (3/6) 50.0% (3/6) 66.7% (4/6)

Transportation networks 33.3% (1/3) 33.3% (1/3) 66.7% (2/3) 100.0% (3/3) 100.0% (3/3) 33.3% (1/3) 100.0% (3/3)

Transit systems 47.3% (26/55) 50.9% (28/55) 56.4% (31/55) 60% (33/55) 49.1% (27/55) 30.9% (17/55) 43.6% (24/55)

Overall 55.0% (77/140) 60.0% (84/140) 59.3% (83/140) 67.1% (94/140) 63.6% (89/140) 42.1% (59/140) 55.0% (77/140)

Gemini 1.5 Pro, GPT-4o, Claude 3 Opus, and GPT-4 have shown promising accuracy on TransportBench.

A few key observations are made below.

• Claude 3.5 Sonnet achieves the best ACC for most topics and the entire TransportBench

dataset. This indicates that in the zero-shot setting, Claude 3.5 Sonnet can be considered as

the state-of-the-art LLM in solving problems from TransportBench, demonstrating its superior

accuracy in both factual and analytical problem-solving tasks compared to other models. Its per-

formance suggests advanced capabilities in handling complex transportation-related queries.

• Gemini 1.5 Pro, GPT-4o, and Claude 3 Opus all demonstrate competitive performance. De-

spite the fact that Gemini 1.5 Pro, GPT-4o, and Claude 3 Opus fall short of Claude 3.5 Sonnet in

terms of overall accuracy, all these LLMs have achieved reasonably good accuracy on Transport-

Bench. The performance gap between Claude 3.5 Sonnet and Gemini 1.5 Pro is actually not that

significant. GPT-4o and Claude 3 Opus can also roughly achieve 60% ACC. We can see that GPT-

4o has surpassed GPT-4 on TransportBench. This is consistent with the known fact that GPT-4o

has outperformed GPT-4 on many existing benchmarks across various domains.

• The open-source model Llama 3.1 has reached the level of the commercial model GPT-4.

There is a huge gap between the ACC achieved by Llama 3 and other LLMs. This may be due to

its smaller model size compared to the commercial LLMs. However, as Meta AI further increases

the model size from 70B to 405B, Llama 3.1 has finally reached the ACC level of GPT-4 on

TransportBench. Since Llama 3.1 is open-source, it provides valuable insights and a starting

point for further research and development. For example, one can potentially improve Llama 3.1

through instruction finetuning and domain adaption (Hu et al., 2022; Wei et al., 2022a).

Overall, leading LLMs have shown promise in solving basic transportation system problems. Next,

we dig into the performance of these LLMs by examining ACC for different problem topics and types.

CEE 310 vs. CEE 418.. It is interesting to investigate the impact of problem difficulty levels. Here

we study the performance gap of the evaluated LLMs on CEE 418 (the last topic on transit systems)

and CEE 310 (all other topics). CEE 310 is an introductory course that covers a very broad range of

topics in transportation engineering, while CEE 418 is considered as a more advanced and more focused

follow-up course (whose prerequisite is CEE 310). The overall ACC for CEE 310 and CEE 418 can be

found in Table 3. As expected, all the LLMs have lower ACC on CEE 418, and higher ACC on CEE

310. This confirms that CEE 418 is more challenging than CEE 310 for LLMs. We notice that an LLM

that does better on CEE 310 does not necessarily attains higher ACC on CEE 418. For example, GPT-4o

perform better than Claude 3 Opus on CEE 310 problems. However, on CEE 418, Claude 3 Opus is

above GPT-4o in terms of ACC. Interestingly, Gemini 1.5 Pro is doing extremely well on CEE 310 but

has a huge performance drop (23.5% ACC) on CEE 418. In addition, GPT-4, Llama 3.1, and Llama 3
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Table 3: Accuracy (ACC) of LLMs on CEE 310 vs. CEE 418 vs. True or False problems vs. General Q&A. The

best results for each metric are highlighted in bold.

LLMs CEE 310 CEE 418 True or False General Q&A

GPT-4 60.0% (51/85) 47.3% (26/55) 58.9% (43/73) 50.7% (34/67)

GPT-4o 65.9% (56/85) 50.9% (28/55) 63.0% (46/73) 56.7% (38/67)

Claude 3 Opus 61.2% (52/85) 56.4% (31/55) 60.3% (44/73) 58.2% (39/67)

Claude 3.5 Sonnet 71.8% (61/85) 60.0% (33/55) 72.6% (53/73) 71.6% (48/67)

Gemini 1.5 Pro 72.9% (62/85) 49.1% (27/55) 71.2% (52/73) 55.2% (37/67)

Llama 3 (70B) 49.4% (42/85) 30.9% (17/55) 45.2% (33/73) 38.8% (26/67)

Llama 3.1 (405B) 62.4% (53/85) 43.6% (24/55) 60.3% (44/73) 49.3% (33/67)

are all struggling with CEE 418 with very low ACC. In general, the questions from CEE 418 are quite

challenging for LLMs. As the most recent LLM, Claude 3.5 Sonnet significantly outperforms GPT-4,

GPT-4o, Gemini 1.5 Pro, and Llama 3.1 on CEE 418, demonstrating its superior capabilities in handling

more advanced topics in transportation engineering. The following example showcases the impressive

reasoning capabilities of Claude 3.5 Sonnet on CEE 418 (we note that Claude 3.5 Sonnet is the only

model that gives a correct final answer as well as some plausible reasoning).2

Claude 3.5 Sonnet on CEE 418: Problem 10.42 from TransportBench

Input: In a grid transit network, for realistic analysis/design, how does the optimal stop spacing

change if we optimize the average passenger travel time instead of the worst-case passenger

travel time? Quantify the change.

Claude 3 Sonnet: To analyze this change in optimal stop spacing, let’s consider the key factors

and how they differ between optimizing for average travel time versus worst-case travel time.

Let’s break this down step-by-step: 1. Key factors:... 4. Mathematical approach: Let’s use a

simplified model to quantify the difference. Assume: - A linear route with uniform passenger

density - Walking speed: vw - Vehicle speed between stops: vv - Time lost per stop (deceleration,

boarding, acceleration): ts. Let the stop spacing be S. 5. Worst-case optimization: The worst-

case walking distance is S/2. Total travel time = (S/2)/vw+L/vv+(L/S)∗ ts Where L is the

total trip length. Optimizing this gives an optimal stop spacing of: Sworst = sqrt(2∗vv ∗ts/vw).
6. Average-case optimization: The average walking distance is S/4. Average travel time =
(S/4)/vw + L/vv + (L/S) ∗ ts. Optimizing this gives an optimal stop spacing of: Savg =
sqrt(4 ∗ vv ∗ ts/vw). 7. Quantifying the change: Savg/Sworst = sqrt(4/2) = sqrt(2) ≈ 1.41.

This simplified analysis suggests that optimizing for average travel time results in stop spacing

that is approximately 41% larger than when optimizing for worst-case travel time.

True or False vs. General Q&A:. Next, we discuss how the problem type affects the LLM performance.

The TransportBench consists of True or False problems and general Q&A problems. Intuitively, True or

False problems are easier than more general Q&A problems. Thus it would be interesting to compare

the performance of the LLMs on the two categories. We report the ACC of the seven evaluated LLMs

for each problem type in Table 3. For most LLMs tested by our study, we can observe the consistently

2One shall note that while the conclusion of “41% larger" is correct, the reasoning is not perfect – the calculation should

have considered walking on both the origin and the destination ends of the trip, and the total expected walking distance should

have been S and S/2 for a worst-case and an average passenger, respectively. This finding motivates us to investigate deeper

into LLMs’ reasoning behavior in later sections.
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lower ACC scores for general Q&A problems compared to True or False problems. This implies that for

many LLMs, the True or False problems from TransportBench are easier than the general Q&A problems.

Gemini 1.5 Pro achieves high ACC for True or False problems, but its performance significantly degrades

on general Q&A problems. Noticeably, Claude 3.5 Sonnet achieves similar ACC for both general Q&A

problems (71.6%) and True or False problems (72.6%). As the most recent commercial LLM, it has

shown impressive improvements on general Q&A problems.

4. Evaluating Consistency of LLMs on True or False Problems

Although (zero-shot) accuracy provides a pivotal metric for initial assessments of LLM capabilities,

it alone does not provide a true reflection of the intelligence level of LLMs. In this section, we will

study another important aspect, namely the consistency of LLMs (Wang et al., 2022; Liang et al., 2024).

Conceptually, consistency refers to uniform, reliable, and logically coherent responses that maintain the

same principles and reasoning across different inquiries. Consistency can be measured in many different

ways. In this section, we study the consistency of LLMs on the True or False problems in the following

two settings.

• Zero-shot consistency: Firstly, we independently test multiple trials of each problem in the zero-

shot setting and examine whether LLMs will generate the same answer (either all true or all false).

This setting is intuitive and can be illustrated by the following example where Claude 3.5 Sonnet

generates inconsistent answers for different independent inquiries. The correct answer is false.

Inconsistency in the Zero-Shot Setting: Problem 10.11 from TransportBench

Input: Sufficiently large buses (infinite capacity) are used to provide shuttle service, and

we always optimize dispatch frequency based on the demand. As the temporal demand

distribution becomes more uneven (i.e., heterogeneous over time, but no change in total

number of passengers), the total (agency + user) cost increases. True or False?

Claude 3.5 Sonnet (Trial 1): To answer this question, let’s think through it step by step...

I believe the statement is False. While it’s true that a more uneven demand distribution

might lead to some inefficiencies, the ability to optimize dispatch frequency and the as-

sumption of infinite capacity buses should allow for maintaining optimal or near-optimal

total costs. The increased costs during peak times would likely be offset by decreased

costs during off-peak times.

Claude 3.5 Sonnet (Trial 2): To answer this question, let’s think through it step by step:

1) First, let’s consider what factors influence the total cost:- Agency costs: primarily re-

lated to the number of buses operated - User costs: primarily related to waiting time 2) In

an optimized system, the dispatch frequency is adjusted based on demand. This means: -

During high demand periods, buses are dispatched more frequently - During low demand

periods, buses are dispatched less frequently. . . 6) Overall effect: - Agency costs might

increase slightly due to the need for a larger fleet- User costs are likely to increase due

to longer average waiting times - The total cost, being the sum of agency and user costs,

would therefore increase. Conclusion: True. As the temporal demand distribution be-

comes more uneven, the total (agency + user) cost is likely to increase, primarily due to

increased user waiting times during off-peak periods and potentially higher agency costs

for maintaining a larger fleet.

• Consistency under self-checking prompts: Secondly, we examine whether LLMs will generate

consistent answers and reasoning when they are prompted to double check their original answers.
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Table 4: Zero-shot consistency of LLMs

LLMs Aggregate ACC ↑ MRR ↓

GPT-4 63.8% 23.3%

GPT-4o 65.5% 23.3%

Claude 3 Opus 60.8% 24.7%

Claude 3.5 Sonnet 75.6% 8.2%

Gemini 1.5 Pro 70.9% 26.0%

Llama 3 (70B) 49.8% 4.1%

Llama 3.1 (405B) 60.5% 12.3%

It has been recognized from the LLM literature that sometimes LLMs can correct their mistakes if given

simple self-checking prompts, such as "carefully check your solutions" (Huang et al., 2022; Kevian et al.,

2024). However, providing such prompts can also cause the LLMs to flip their original correct answers.

The second self-checking setting studies such consistency issues and incorporates some basic interac-

tions between LLMs and human users. We will provide more details for the self-checking setting later.

On zero-shot consistency of LLMs, we test all the LLMs via five independent trials of each of

the 73 True or False problems in TransportBench, and report two metrics: (i) Mixed Response Rate

(MRR) in the zero-shot setting, which is the percentage of the True or False problems that received

mixed responses (non-identical answers) in any of the five trials; and (ii) aggregate ACC, which is the

proportion of the trials where LLMs give the correct true or false label over the total 73× 5 = 365 trials.

The results are reported in Table 4. Notice that a low MRR means that LLMs are consistent in generating

either correct or incorrect answers in the zero-shot setting. We need to complement this metric by the

aggregate accuracy of LLMs. It is desirable to have high aggregate ACC and low MRR at the same time.

We make the following observations on the zero-shot consistency of LLMs.

• Llama 3 achieves the lowest MRR. However, the aggregate ACC for Llama 3 is also the lowest.

This means that Llama 3 has strong bias in answering TransportBench questions and consistently

generate wrong answers. After taking a closer look at the responses generated by Llama 3, we

realize that Llama 3 reports True for almost 90% of the total problem trials. This implies that

Llama 3 does not master the technical concepts from transportation engineering.

• Llama 3.1 also has a low MRR and achieves higher aggregate ACC than Llama 3 (the aggregate

ACC of Llama 3.1 is comparable to GPT-4 and GPT-4o). After examining the response from

Llama 3.1 more carefully, we realize that Llama 3.1 has only improved the understanding of the

materials from CEE 310 in comparison to Llama 3. We further calculate the aggregate ACC of

Llama 3.1 for the T/F problems from CEE 310, which is equal to 63%. In contrast, the aggregate

ACC of Llama 3.1 for the T/F problem from CEE 418 is only 56.3%. Llama 3.1 is performing

reasonably well on the T/F problems for CEE 310. However, when answering the T/F problems

from CEE 418, Llama 3.1 still tends to give True most of the time. This implies that Llama 3.1

has not mastered the materials from CEE 418 yet. It will be interesting to see whether the next

version of the Llama model still has this biased behaviors for CEE 418.

• Claude 3 Sonnet achieves the highest aggregate ACC while maintaining a very low MRR. In this

zero-shot setting, Claude 3 Sonnet can be considered as the state-of-the-art model for solving

TransportBench problems.

• From the MRR values, we can see that most LLMs including GPT-4, GPT-4o, Claude 3 Opus, and

Gemini 1.5 Pro are not very consistent in giving true/false labels in the zero-shot setting. How to

improve their consistency remains open research issues, which should be addressed in the future.
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• The aggregate ACC trend is quite consistent with the original ACC results in Table 3. Overall, it

is fair to claim that LLMs have shown promise in solving transportation system problems.

When LLMs are prompted to self-check their initial answers, their accuracy may or may not improve.

The following example illustrates the self-checking setting and showcases that sometimes LLMs can

correct their own mistakes in such a self-checking setting.

Correction via Self-checking: Problem 10.12 from TransportBench

Input: The agency is trying to decide whether to design a hub-and-spoke network or a grid net-

work to serve a city with uniformly distributed passenger O/D demand. As agency investment

(total service route length per unit area) approaches infinity, these two types of networks eventu-

ally yield the same expected door-to-door passenger travel time. True or False?

Claude 3.5 Sonnet: Let’s think through this step-by-step: 1) First, let’s consider what hub-and-

spoke and grid networks look like: - Hub-and-spoke: Central hub with routes radiating outward

like spokes - Grid: Parallel and perpendicular routes forming a grid pattern 2) As investment ap-

proaches infinity, we can assume: - The number of routes (spokes or grid lines) would approach

infinity - The spacing between routes would approach zero 3) In a hub-and-spoke network with

infinite investment: - Every point would essentially have a direct connection to the hub - From

the hub, there would be a direct connection to every other point 4) In a grid network with infinite

investment: - The grid would become infinitely fine - Any two points would be connected by

an almost straight line path 5) Door-to-door travel time in both cases: - As the network den-

sity approaches infinity, the path between any two points approaches a straight line - The travel

time would approach the time it takes to travel in a straight line between origin and destina-

tion 6) Therefore, with infinite investment, both network types would provide essentially direct,

straight-line paths between any two points, resulting in the same expected door-to-door travel

time. Conclusion: True.

Input: Carefully check your solutions.

Claude 3.5 Sonnet: You’re right to ask me to carefully check my solution. Let’s review this

problem more critically: 1) The key aspects to consider are: - Network structure (hub-and-spoke

vs. grid) - Uniformly distributed passenger O/D (origin/destination) demand - Infinite investment

(total service route length per unit area approaching infinity) - Expected door-to-door passenger

travel time 2) Hub-and-spoke network with infinite investment: - As investment approaches

infinity, the number of spokes would approach infinity - However, all trips not beginning or

ending at the hub still require a transfer at the hub - This transfer time doesn’t disappear, even

with infinite investment 3) Grid network with infinite investment: - As investment approaches

infinity, the grid becomes infinitely fine - Any two points can be connected by an almost straight

line path - No transfers are necessary 4) Door-to-door travel time comparison: - Grid network:

Approaches direct, straight-line travel time - Hub-and-spoke network: Approaches straight-line

travel time plus transfer time at the hub 5) Critical realization: - The transfer time at the hub in

the hub-and-spoke network creates a persistent difference in expected door-to-door travel time

compared to the grid network. Upon careful reconsideration, I realize my previous conclusion

was incorrect. Revised conclusion: False. As agency investment approaches infinity, the hub-

and-spoke network will still require transfers for many trips, resulting in longer expected door-

to-door passenger travel times compared to the grid network.

In the above example, Claude 3.5 Sonnet is capable of correcting its original mistake and identifying
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that the key to this question is that the presence of a hub in hub-and-spoke networks imposes circuity

that cannot be avoided even with an infinite route length — i.e., the majority of passengers must make

a transfer at the hub, which often implies detours. Even though it might be better to say “no detours are

necessary" (instead of “no transfers are necessary") and avoid "straight-line paths" in the discussion of

grid networks, this example demonstrates the potential benefits of using self-checking prompts.

However, in the self-checking setting, LLMs may also misadjust their original correct answers and

start to generate inconsistent true/false labels. This is illustrated by the following example.

Inconsistency in the Self-Checking Setting: Problem 6.3 from TransportBench

Input: In all stationary traffic, time-mean speed equals space-mean speed. True or False?

Claude 3.5 Sonnet: False. In stationary traffic conditions, time-mean speed and space-mean

speed are generally not equal. Here’s a brief explanation: 1. Time-mean speed is the arithmetic

average of speeds of vehicles passing a fixed point over a period of time. 2. Space-mean speed

is the harmonic mean of speeds of vehicles over a given length of road at an instant in time. 3.

In most cases, time-mean speed is higher than space-mean speed. 4. The difference between

these two measures tends to increase with greater speed variability among vehicles. 5. Even in

stationary traffic (where traffic conditions are stable over time), there can still be variations in

individual vehicle speeds, leading to a difference between time-mean and space-mean speeds.

The equality of time-mean and space-mean speeds occurs only in the special case where all

vehicles are traveling at exactly the same speed, which is rarely the case in real traffic conditions,

even when stationary.

Input: Carefully check your solutions.

Claude 3.5 Sonnet: Thank you for asking me to carefully check my solution. Upon review,

I realize I need to correct my previous statement. You’re right to question this, as my initial

response was incorrect. Let me provide the correct answer: True. In stationary traffic, time-

mean speed does equal space-mean speed. Here’s the explanation: 1. Stationary traffic refers

to a condition where the statistical properties of traffic flow do not change over time. 2. In

such conditions, the distribution of speeds at a fixed point (used for time-mean speed) would be

the same as the distribution of speeds over a section of road at an instant (used for space-mean

speed). 3. When the traffic is stationary, the variability that usually causes the difference between

time-mean and space-mean speeds is eliminated. 4. Therefore, in this specific case of stationary

traffic, the two measures converge and become equal. I apologize for my initial error. This is an

important concept in traffic flow theory, and I’m glad you prompted me to double-check. It’s a

good reminder of the specific conditions under which these two measures can be equal.

In the above example, Claude 3.5 Sonnet obtains the correct final answer initially in the zero-shot setting

(despite the flawed statement in step 2; see a related error to Problem 6.13 in Section 5.3), and then the

self-checking prompt makes it change the conclusion to a wrong one. Interestingly, Claude 3.5 Sonnet

is zero-shot consistent for this problem, i.e. it generates correct final answers for the five independent

trials in the zero-shot setting. However, the self-checking prompt becomes some disturbance that causes

Claude 3.5 Sonnet to start giving inconsistent behaviors. Hence zero-shot consistency and the consis-

tency in the self-checking setting are not equivalent. The interactions between LLMs and human users

can lead to unexpected inconsistent behaviors that cannot be observed in a zero-shot setting.

In light of the above discussion, we next provide a complementary perspective on consistency of

LLMs using two metrics. The first metric is self-checking accuracy (denoted as ACC-s̄), which quan-
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Table 5: Accuracy (ACC) and Absolute Self-Checked Accuracy (ACC-s̄) of LLMs on the True or False prob-

lems. The best results for each metric are highlighted in bold.

Accuracy Incorrect flips

LLMs ACC ↑ ACC-s̄ ↑ CEE-418 ↓ CEE-310 ↓ Total ↓

GPT-4 58.9% (43/73) 68.5% (50/73) 3 1 4

GPT-4o 63.0% (46/73) 68.5% (50/73) 2 4 6

Claude 3 Opus 60.3% (44/73) 49.3% (36/73) 16 18 34

Claude 3.5 Sonnet 72.6 % (53/73) 67.1% (49/73) 8 8 16

Gemini 1.5 Pro 71.2% (52/73) 46.6% (34/73) 11 20 31

Llama 3 (70B) 45.2% (33/73) 56.2% (41/73) 11 11 22

Llama 3.1 (405B) 60.3% (44/73) 54.8% (40/73) 12 13 25

tifies the instances in which LLMs give correct answers after the self-checking process. Notice that

ACC-s̄ does not have to be higher than ACC. For an LLM which responds very inconsistently to the

self-checking prompts, ACC-s̄ can actually be lower than the original ACC in the zero-shot setting due

to flipping the initial correct answers. The second metric is the number of the True or False problems in

which the LLMs flip the original correct answers to wrong ones. The number of incorrect flips can give

a more direct illustration on the extent of the inconsistency in the self-checking setting. For a consistent

LLM, we ideally want ACC-s̄ to be higher than ACC and the number of incorrect flips to be low. Now

we present both metrics for GPT-4, GPT-4o, Claude 3 Opus, Claude 3.5 Sonnet, Gemini 1.5 Pro, Llama

3, and Llama 3.1 in Table 5. We make the following observations.

• GPT-4o and GPT-4 are the only two models whose accuracy is benefited from the self-checking

prompts. For all other models including Claude 3.5 Sonnet, the number of incorrect flips is larger

than the number of correct flips. The number of incorrect flips for GPT-4 and GPT-4o is very low.

Therefore, in the self-checking setting, GPT-4 and GPT-4o are the most consistent.

• Given self-checking prompts, Claude 3.5 Sonnet is still more consistent than Claude 3 Opus,

Gemini 1.5 Pro, Llama 3, and Llama 3.1, but less consistent than GPT-4 and GPT-4o. Therefore,

for transportation engineering tasks involving human interactions, it is unclear whether one should

still view Claude 3.5 Sonnet as the state-of-the-art LLM.

• Claude 3 Opus, Gemini 1.5 Pro, Llama 3, and Llama 3.1 all make many incorrect flips. It seems

natural for us to question whether these models really master the concepts involving in our True

or False problems.

Overall, we can see that evaluating the consistency of LLMs is actually quite subtle. In the zero-shot

setting, Claude 3.5 Sonnet is the most consistent model. However, in the self-checking setting, GPT-4

and GPT-4o are both more consistent than Claude 3.5 Sonnet. There are many other settings where the

consistency of LLMs. can be tested. For instance, one can rephrase each problem in various tricky ways

and then test whether LLMs will be able to answer all the variants correctly. Our analysis is just a starting

point, and future efforts are needed to address the consistency of LLMs in a comprehensive manner.

5. Reasoning Behaviors of LLMs on TransportBench

One impressive observation from our study is that LLMs have started to show promise in reasoning

for transportation engineering problems, e.g., sometimes they can provide seemingly correct reasons for

their True/False labels or solutions to general Q&A questions. This observation aligns well with the large

body of literature discussing the promise of LLM reasoning across various domains (Wei et al., 2022b;
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Huang and Chang, 2022; Zhou et al., 2022; Sun et al., 2023; Havrilla et al., 2024). However, alongside

the promise of LLM reasoning, there are potential drawbacks and unresolved issues. For instance, recent

work has identified potential breakdowns of LLM reasoning on very simple common-sense problems

(Nezhurina et al., 2024). In this section, we perform a case study of LLM reasoning based on examining

LLM responses on TransportBench more carefully. We will discuss various interesting observations

on the reasoning behaviors of LLMs in answering transportation engineering problems. Importantly,

despite the promise, LLMs can make various subtle reasoning errors.

5.1. Claude 3.5 Sonnet vs. Claude 3 Opus: Reasoning before conclusion matters

As seen previously, Claude 3.5 Sonnet has improved the accuracy of Claude 3 Opus on Transport-

Bench. In this section, we will examine the role of reasoning in this improvement for the True or False

problems. We will start from the following intriguing example.

Claude 3.5 Sonnet vs. Claude 3 Opus: Problem 6.5 from TransportBench

Input: In traffic, density = 1 / headway. True or False?

Claude 3.5 Sonnet: To answer this question accurately, let’s break down the concepts and their

relationship: 1. Traffic density: This is typically defined as the number of vehicles per unit

length of road. 2. Headway: In traffic engineering, headway usually refers to the time interval

between vehicles passing a point on the road. Given these definitions, the statement "density = 1 /

headway" is not precisely correct. Here’s why: 1. Units mismatch: Density is typically measured

in vehicles per unit length (e.g., vehicles/km), while headway is measured in time (e.g., seconds).

The reciprocal of time wouldn’t directly give us vehicles per unit length. 2. Relationship: While

there is a relationship between density and headway, it’s not as simple as a direct reciprocal.

The correct relationship involves speed as well. The more accurate relationship is: Density =

Flow / Speed Where: - Flow is measured in vehicles per unit time (e.g., vehicles/hour) - Speed

is measured in distance per unit time (e.g., km/hour) - Resulting in Density as vehicles per unit

distance (e.g., vehicles/km). Headway is related to flow: Flow = 1 / Headway. Therefore, the

statement "In traffic, density = 1 / headway" is False.

Claude 3 Opus: True. In traffic flow theory, density is defined as the number of vehicles per unit

length of the roadway. Headway, on the other hand, is the time or distance between successive

vehicles. Mathematically, density (k) is the inverse of headway (h), expressed as: k = 1/h. This

relationship assumes a uniform headway between vehicles. In reality, headways can vary, and

the density is often calculated as an average over a roadway segment.

Input (Modified): In traffic, density = 1 / time headway. True or False?

Claude 3 Opus: True. In traffic engineering, density is defined as the inverse of the average

time headway between vehicles. Time headway is the time elapsed between the front of a leading

vehicle passing a point on the roadway and the front of the following vehicle passing the same

point. It’s usually measured in seconds. So the formula is: Density = 1 / Average Time Headway,

where density is measured in vehicles per unit time (often vehicles per hour) and average time

headway is measured in units of time per vehicle (often seconds per vehicle). This relationship

allows traffic engineers to estimate traffic density by measuring the time gaps between vehicles

at a specific point on the road.

At a first glance, it seems that given the original problem statement, Claude 3.5 Sonnet knows the correct
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relationship between traffic density and headway, while Claude 3 Opus does not. In the concurrent

transportation literature, “headway” by default refers to “time headway;” i.e., the time that elapses

between the arrival of two consecutive vehicles at a certain location (Daganzo, 1997; Trans Res Board,

2000). Some earlier transportation documents used the obsolete term “space headway” (or “distance

headway”), which refers to the distance between two consecutive vehicles at a certain time, which has

been replaced by “spacing”. It seems that sometimes Claude 3 Opus cannot distinguish between “space

headway” and “headway.” However, even if we explicitly state “time headway" in the problem statement,

Claude 3 Opus still cannot give the correct conclusion. After taking a closer look at the above example,

we notice that Claude 3.5 Sonnet first provided a detailed reasoning process before giving the final

conclusion, while Claude 3 Opus first gave a conclusion and then provided some explanations to justify

the answer. This motivates us to make two modifications to the original problem, as shown below.

Reasoning Matters: Adding Prompts to Problem 6.5 from TransportBench

Input (Modification 1): In traffic, density = 1 / headway. True or False? Provide detailed

reasoning before giving the final conclusion.

Claude 3 Opus: To determine if the statement "In traffic, density = 1 / headway" is true or false,

let’s first define the terms and explore their relationship: Traffic Density: Traffic density is the

number of vehicles occupying a given length of a highway or road. It is usually expressed as

vehicles per kilometer or vehicles per mile. Headway: Headway is the time gap between the

front of a leading vehicle and the front of the following vehicle, measured at a specific point

on the road. It is usually expressed in seconds. The fundamental relationship between density

and headway is: density = flow / speed where: - density is the traffic density (vehicles/km

or vehicles/mile) - flow is the traffic flow rate (vehicles/hour) - speed is the average speed of

the vehicles (km/hour or miles/hour). Assuming a constant flow rate, the relationship between

headway and flow is: headway = 1 / flow. Substituting this into the density equation, we get:

density = flow / speed = (1 / headway) / speed. Therefore, the statement "density = 1 / headway"

is false. The correct relationship is: density = (1 / headway) / speed. In other words, density

is inversely proportional to both headway and speed. As headway decreases (vehicles become

closer together), density increases, assuming a constant speed. However, density is not simply

the reciprocal of headway, as the statement suggests.

Input (Modification 2): In traffic, density = 1 / headway. True or False? Explain your answer.

Claude 3.5 Sonnet: True. Let me explain why this statement is correct: 1. Definition of terms:

- Density: The number of vehicles per unit length of road (usually vehicles per kilometer or

mile) - Headway: The time or distance between two consecutive vehicles in a traffic stream. 2.

Relationship: - Headway is typically measured in time (seconds) or distance (meters or feet) -

Density is the inverse of the average space headway. 3. Explanation: - If we consider a uniform

traffic flow where all vehicles are evenly spaced: - A longer headway means fewer vehicles in a

given length of road (lower density) - A shorter headway means more vehicles in a given length

of road (higher density) - Mathematically, we can express this as: Density = 1 / (Average space

headway) - Note: When using time headway, you need to factor in the speed to convert it to

space headway: Density = 1 / (Speed * Average time headway). 4. Example: - If the average

headway is 50 meters between vehicles: Density = 1 / 50 meters = 0.02 vehicles per meter = 20

vehicles per kilometer. This inverse relationship between density and headway is fundamental

in traffic flow theory and is used in various traffic engineering calculations and models.
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First, we give the prompt “provide detailed reasoning before giving the final conclusion" to Claude 3

Opus. All of a sudden, Claude 3 Opus can answer this question correctly. It correctly points out that

headway is the time gap between the front of a leading vehicle and the front of the following vehicle,

measured at a specific point on the road. Next, we give the prompt “explain your answer" to Claude 3.5

Sonnet such that it will first give a True or False label. Now Claude 3.5 Sonnet struggles with the concept

“headway" (it defines headway to be the time or distance between two consecutive vehicles in a traffic

stream). From these behavior changes, it seems that LLMs are more likely to distill the right knowledge

when asked to provide detailed reasoning before giving the conclusion. This intuitively makes sense

with our understanding that LLMs generate their response based on text strings in an autoregressive

left-to-right manner. A similar example is shown as follows (the correct answer is False).

Reasoning matters: Problem 6.7 from TransportBench

Input: In a cumulative diagram for a traffic network, the horizontal separation between the

departure and the arrival curves gives the number of vehicles between the two observers. True

or False?

Claude 3.5 Sonnet Opus: To answer this question accurately, let’s think through it step by step:

1) First, let’s . . . 7) The horizontal separation, on the other hand, does not directly represent the

number of vehicles. It represents a time difference. Given this analysis, we can conclude: False.

Claude 3 Opus: True. In a cumulative diagram for a traffic network, the vertical axis represents

the cumulative number of vehicles, while the horizontal axis represents time. The diagram

typically shows two curves: one for the departure of vehicles at an upstream location and another

for the arrival of those vehicles at a downstream location. The horizontal separation between

these two curves at any given point in time represents the number of vehicles that have departed

the upstream location but have not yet arrived at the downstream location. In other words, it

shows the number of vehicles that are currently traveling between the two observation points at

that specific time. This principle is used in traffic flow analysis to understand the distribution of

vehicles along a road segment and to identify potential bottlenecks within the network.

Input (Modification 1): In a cumulative diagram for a traffic network, the horizontal separation

between the departure and the arrival curves gives the number of vehicles between the two

observers. True or False? Provide detailed reasoning before giving the final conclusion.

Claude 3 Opus: To determine whether the given statement is true or false, let’s first understand

what a cumulative diagram is and how it represents traffic flow. . . In conclusion, the given state-

ment is false. The horizontal separation between the departure and arrival curves in a cumulative

diagram represents travel time, while the vertical separation represents the number of vehicles

between the two observation points.

Input (Modification 2): In a cumulative diagram for a traffic network, the horizontal separation

between the departure and the arrival curves gives the number of vehicles between the two

observers. True or False? Explain your answer.

Claude 3.5 Sonnet: True. Let me explain why this statement is correct. . .

The above example again highlights the potential important role of LLM reasoning for generating correct

final conclusions. While the prompt “provide detailed reasoning before giving the final conclusion" is
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not a universal fix to many LLM errors, the order of reasoning and conclusion generation sometimes

matters.

5.2. Correct final answers may come from flawed reasoning approaches

The next important observation is that LLMs can make unclear/flawed reasoning to generate correct

final conclusions for certain problems, giving illusions on their proficiency in transportation system

topics. We have seen this issue with some of the examples in Section 3. The following example provides

a clear illustration for this.

Flawed Reasoning with Correct Conclusion: Problem 10.55 from TransportBench

Input: A bus line runs from 5 am to midnight. In each direction, the line has 40 stops and is

12 km long. The bus cruising speed is 30 km/h, and each stop imposes a delay of 15 seconds.

The headway is 10 min during the rush hours (7 am-9 am, and 3 pm-7 pm), and 30 min for the

remainder of the service period. What is the minimum fleet size M needed to run this route?

Claude 3 Sonnet: Let’s approach this problem step by step: 1. Calculate the round-trip time:

- Distance: 12 km × 2 (round trip) = 24 km - Time at cruising speed: 24 km ÷ 30 km/h = 0.8

hours = 48 minutes - Number of stops: 40 × 2 (round trip) = 80 stops - Total delay at stops: 80

× 15 seconds = 1200 seconds = 20 minutes - Total round-trip time: 48 + 20 = 68 minutes. 2.

Determine the number of buses needed during different periods: a) Rush hours (headway = 10

minutes): Buses needed = Round-trip time ÷ Headway = 68 ÷ 10 = 6.8, rounded up to 7 buses

b) Non-rush hours (headway = 30 minutes): Buses needed = 68 ÷ 30 = 2.27, rounded up to

3 buses. 3. Calculate the minimum fleet size: The minimum fleet size will be the maximum

number of buses needed at any time, which is during rush hours. Therefore, the minimum fleet

size M needed to run this route is 7 buses.

Input (Modification 1): A bus line runs from 5 am to midnight. In each direction, the line has

40 stops and is 15 km long. The bus cruising speed is 25 km/h, and each stop imposes a delay

of 15 seconds. The dispatch headway from a terminus (at one end of the route) is 10 min during

the rush hours (7 am-8 am, and 5 pm-6 pm), and 30 min for the remainder of the service period.

What is the minimum fleet size M needed to run this route?

Claude 3 Sonnet: Let’s approach this problem step by step: 1. Calculate the total trip time:

Distance = 15 km, Cruising speed = 25 km/h, Travel time = 15 km ÷ 25 km/h = 0.6 hours =

36 minutes, Stop delay = 15 seconds × 40 stops = 600 seconds = 10 minutes. Total one-way

trip time = 36 + 10 = 46 minutes. 2. Calculate the round trip time: Round trip time = 46 × 2 =

92 minutes. 3. Determine the number of buses needed for different headways: For 10-minute

headway (rush hours): Buses needed = Round trip time ÷ Headway = 92/10 = 9.2, Round up to

10 buses. For 30-minute headway (non-rush hours): Buses needed = 92 ÷ 30 = 3.07, Round up

to 4 buses. 4. Determine the minimum fleet size: The minimum fleet size will be the larger of

the two calculated values, which is 10 buses.

In the above example, we first test LLMs on Problem 10.55 from TransportBench. We can see that

Claude 3.5 Sonnet is able to get the correct answer M = 7. However, upon reading the reasoning behind

the answer, we find it to be flawed since it simply computes the “steady-state" vehicle requirements in

peak and off-peak periods separately (and chooses the larger value), but ignores that some of the vehicles

dispatched in the off-peak period could later return from service and become available for use during

the period periods. In other words, LLMs implicitly assume in their reasoning that rush hour service is

run from −∞ to ∞ time. Such a reasoning error is quite subtle and does not affect the final number
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of M = 7 in the original problem, partly because the peak period duration is sufficiently long to offset

the impacts of returned vehicles from the off-peak period. When we modify the problem statement by

shortening the peak period durations, the fleet size requirement should decrease to M = 8 (instead of

10). This time Claude 3.5 Sonnet uses the same reasoning which eventually leads to the wrong answer.

This example highlights the fact that sometimes LLMs can only use a simplistic reasoning path without

fully understanding the physics behind the transportation engineering problem.

Another example can be obtained by examining the general Q&A form of Problem 10.16 from

TransportBench.

True or False vs. General Q&A Versions: Problem 10.16 from TransportBench

Input (True or False Form): The worst-case waiting time of passengers traveling in a two-level

hierarchical corridor transit system (with common headway H), when they have an appointment

at the destination and know the schedule, is 3H . True or False?

Claude 3 Sonnet: To answer this question, let’s think through it step by step: 1) In a two-level

hierarchical corridor transit system, we typically have: - A main line (trunk line) - Secondary

lines (feeder lines) that connect to the main line. 2) The common headway H means that all lines,

both main and secondary, have the same frequency of service. 3) For a passenger to reach their

destination, they might need to: - Wait for a feeder line - Travel on the feeder line - Transfer to

the main line - Travel on the main line. 4) The worst-case scenario would involve: - Just missing

a feeder line (waiting almost full headway H) - Transferring to the main line (potentially waiting

another full headway H). 5) However, since the passenger knows the schedule, they can time

their arrival at the first stop to minimize waiting time. 6) In the absolute worst case, a passenger

might: - Wait up to H for the feeder line - Just miss the connection to the main line, waiting

another H - Arrive at their destination, potentially waiting up to H for their appointment time. 7)

This worst-case scenario adds up to a total waiting time of 3H. Therefore, the statement is True.

Input (Q&A Form): Calculate the worst-case waiting time of passengers traveling in a two-

level hierarchical corridor transit system (with common headway H), when they have an ap-

pointment at the destination and know the schedule.

Claude 3 Sonnet: To calculate the worst-case waiting time in this scenario, let’s break down the

problem step by step: 1) First, let’s consider what a two-level hierarchical corridor transit system

means: - There are two levels of service: a main line and feeder lines. - Passengers may need to

transfer from a feeder line to the main line. 2) Given information: - The system operates with a

common headway H. - Passengers know the schedule and have an appointment at the destination.

3) In the worst-case scenario: - A passenger just misses a feeder line vehicle. - After taking the

feeder line, they just miss the main line vehicle. - They arrive at their destination just before

their appointment. 4) Worst-case waiting time calculation: a) Wait for feeder line: H b) Travel

time on feeder line: (Let’s call this Tf , but it doesn’t affect waiting time) c) Wait for main line:

H d) Travel time on main line: (Let’s call this Tm, but it doesn’t affect waiting time) 5) Total

worst-case waiting time: Wworst = H + H = 2H Therefore, the worst-case waiting time for

passengers in this system is 2H , where H is the common headway.

For the above example, Claude 3.5 Sonnet gives the wrong value 3H for the worst-case waiting time

when the problem is stated as a True or False problem. The correct reasoning shown in step 5) is ignored

in steps 6) and 7). Interestingly, if we state the problem in a general Q&A form and directly ask for calcu-

lating the worst-case waiting time, Claude 3.5 Sonnet gives the right answer 2H . However, a closer look
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at its reasoning shows that the seemingly correct answer actually comes from two simultaneous mistakes:

assuming waiting time H for the feeder line (which should not be included because the passengers know

the schedule), and ignoring the waiting time H for the appointment (which should be included). Again,

this demonstrates that sometimes LLMs can obtain final correct values with flawed reasoning.

5.3. Simple domain-specific prompts can improve reasoning

Finally, we also notice that sometimes simple domain-specific prompts can notably improve LLM

reasoning. For illustration, consider the following problem.

Simple Domain-Specific Prompts: Problem 4.5 from TransportBench

Input: If the speed of a vehicle keeps increasing, the aerodynamic resistance will eventually

exceed the rolling resistance, because the aerodynamic resistance depends on the velocity of the

vehicle while the rolling resistance does not. True or False?

Claude 3.5 Sonnet: To answer this question, let’s break down the key concepts and their rela-

tionships: 1. Aerodynamic resistance (drag): - Depends on the velocity of the vehicle - Typically

increases quadratically with velocity (proportional to v2) 2. Rolling resistance: - Primarily de-

pends on the weight of the vehicle and road conditions - Generally does not depend on velocity

(or has a very weak dependence). Given these facts, we can conclude: True.

Input (Modified): If the speed of a vehicle keeps increasing, the aerodynamic resistance will

eventually exceed the rolling resistance, because the aerodynamic resistance depends on the

velocity of the vehicle while the rolling resistance does not. True or False? Think about rolling

resistance at different speed values.

Claude 3.5 Sonnet: Let’s think about this step-by-step: 1. Aerodynamic resistance: - Also

known as air resistance or drag - Increases with velocity, typically proportional to the square of

velocity. 2. Rolling resistance: - Caused by the deformation of the wheel and the surface it’s

rolling on - Generally considered to be independent of velocity for low speeds - However, at

higher speeds, rolling resistance does actually increase. 3. Rolling resistance at different speeds:

- At low speeds, rolling resistance is relatively constant - As speed increases, several factors cause

rolling resistance to increase: a. Hysteresis in the tire material increases b. Centrifugal forces

cause tire deformation c. Vibrations in the tire structure increase. 4. Relationship between the

two resistances: - At low speeds, rolling resistance is typically the dominant force - As speed in-

creases, aerodynamic resistance increases more rapidly (proportional to v2) - Rolling resistance

also increases with speed, but not as dramatically as aerodynamic resistance 5. Conclusion:

While it’s true that aerodynamic resistance will eventually exceed rolling resistance as speed in-

creases, the statement as given is not entirely accurate. It’s incorrect to say that rolling resistance

does not depend on velocity. It does, just not as strongly as aerodynamic resistance. Therefore,

the statement is False. A more accurate statement would be: “If the speed of a vehicle keeps

increasing, the aerodynamic resistance will eventually exceed the rolling resistance, because the

aerodynamic resistance increases more rapidly with velocity compared to the rolling resistance."

In the above example, the problem statement is in the form of "A is true, because B and C are true." Both

A and B are true, but C is not — i.e., the rolling resistance does increase with the velocity: it remains

almost constant only “within a range of small speeds," but for higher speeds, it grows as the speed

increases. Claude 3.5 Sonnet fails in catching this reasoning error in the “because" statement and stated

that the rolling resistance is relatively independent of vehicle. It appears that the LLM either jumps to
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the wrong conclusion simply because “A" is true, or it does not recognize the right condition for “C"

to hold. Interestingly, once we give a simple domain-specific prompt “think about rolling resistance at

different speed values," Claude 3.5 Sonnet gives the correct answer under the reason that it is incorrect

to say that rolling resistance does not depend on velocity. Below is another relevant example.

Simple Domain-Specific Prompts: Problem 6.13 from TransportBench

Input: Consider a two-lane highway with stationary traffic. There are two types of vehicles, cars

and trucks, each occupying one lane. Cars travel with constant speed vc and the time headway

between any two consecutive cars is hc. Trucks travel with constant speed vt, and the headway

between any two consecutive trucks is ht.

a. What is the total density (regarding all vehicles) on this highway?

b. What is the space-mean speed?

Claude 3.5 Sonnet: Let’s approach this problem step by step. We’ll start by defining some terms

and then solve each part of the question. Definitions: - Density (k): The number of vehicles per

unit length of the roadway. - Space-mean speed (vs): The harmonic mean of the speeds of

vehicles passing a point on the roadway. Let’s solve each part: a. Total density on the highway:

To find the total density, we need to calculate the density for cars and trucks separately and then

add them together. For cars: - Density of cars (kc) = 1/(vc ∗hc). For trucks: - Density of trucks

(kt) = 1/(vt ∗ ht). Total density (k) = kc + kt = 1/(vc ∗ hc) + 1/(vt ∗ ht). b. Space-mean

speed: The space-mean speed is calculated using the harmonic mean of the speeds, weighted by

the proportion of vehicles of each type. Let’s define: - fc: Fraction of cars = kc/(kc + kt) - ft:
Fraction of trucks = kt/(kc+kt). Space-mean speed (vs) = 1/(fc/vc+ft/vt). Substituting the

fractions: vs = 1/((kc/(kc+kt))/vc+(kt/(kc+kt))/vt). Simplifying: vs = (kc+kt)/(kc/vc+
kt/vt). Substituting the density expressions: vs = (1/(vc ∗ hc) + 1/(vt ∗ ht))/(1/(v

2
c ∗ hc) +

1/(v2t ∗ ht)). To summarize: a. Total density: k = 1/(vc ∗ hc) + 1/(vt ∗ ht) b. Space-mean

speed: vs = (1/(vc ∗ hc) + 1/(vt ∗ ht))/(1/(v
2
c ∗ hc) + 1/(v2t ∗ ht))

Input (Modified): Consider a two-lane highway with stationary traffic. There are two types of

vehicles, cars and trucks, each occupying one lane. Cars travel with constant speed vc and the

time headway between any two consecutive cars is hc. Trucks travel with constant speed vt, and

the headway between any two consecutive trucks is ht.

a. What is the total density (regarding all vehicles) on this highway?

b. What is the space-mean speed? (Notice that space-mean speed is the arithmetic mean of

vehicle speeds measured from an aerial photo.)

Claude 3.5 Sonnet: Let’s approach this problem step by step: 1) First, let’s define some

variables: kc = density of cars kt = density of trucks k = total density of vehicles 2) Now,

let’s solve each part: a) To find the total density: - For cars: Density = 1 / (speed * head-

way) kc = 1/(vc ∗ hc) - For trucks: kt = 1/(vt ∗ ht) - Total density is the sum of these:

k = kc+kt = 1/(vc ∗hc)+1/(vt ∗ht) b) To find the space-mean speed: The space-mean speed

(vs) is given by: vs =
q
k Where q is the flow rate and k is the total density. - Flow rate for cars:

qc = kc ∗ vc = vc/(vc ∗ hc) = 1/hc - Flow rate for trucks: qt = kt ∗ vt = vt/(vt ∗ ht) = 1/ht
- Total flow rate: q = qc + qt = 1/hc + 1/ht. Now we can calculate the space-mean speed:

vs =
q
k = 1/hc+1/ht

1/(vc∗hc)+1/(vt∗ht)
= vc∗vt∗(hc+ht)

vt∗ht+vc∗hc
. Therefore, the final answers are: a) Total density:

k = 1/(vc ∗ hc) + 1/(vt ∗ ht) b) Space-mean speed: vs =
vc∗vt∗(hc+ht)
vt∗ht+vc∗hc

.
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For the above example, Claude 3.5 Sonnet can compute the total vehicle density for a two-lane highway,

but reasons incorrectly to compute the space-mean speed. In all of our trials, it repeatedly states that the

space-mean speed is “the harmonic mean of the individual speeds, weighted by the proportion of vehicles

of each type." And then it uses the densities of the two vehicle types as the weights. This is wrong,

however, since harmonic mean shall be used only when speeds are weighted by the flow of either vehicle

type (as if speed samples are collected by a roadside observer); while arithmetic mean should be used

directly when speeds are weighted by density (as if speed samples are collected from an aerial video).

This example shows that Claude 3.5 Sonnet has not fully understood the subtle connection between the

space-mean speed formula and the way speed samples are collected. In light of this observation, we try to

give the domain-specific prompt “space-mean speed is the arithmetic mean of vehicle speeds measured

from an aerial photo." Then, Claude 3.5 Sonnet is able to avoid the “harmonic mean" + “weighted by

density" trap, and come up the correct reasoning.

From the above examples, we can see that simple domain-specific prompts may be quite useful

in helping LLMs improve their reasoning in the domain of transportation engineering. An interesting

future research direction is to design systematic principled prompts for bigger classes of transportation

engineering problems.

6. Conclusion and Future Work

In this paper, we introduce the TransportBench dataset for the purpose of benchmarking the capabil-

ities of leading LLMs in solving undergraduate-level transportation engineering problems. Our bench-

mark study highlights Claude 3.5 Sonnet as the most proficient model in this domain. Our findings

demonstrate the strong potential and promise of using leading LLMs to revolutionize problem solving

in the field of transportation engineering. In particular, it appears that current LLMs are quite capable

of memorizing facts and technical definitions, connecting related concepts, and integrating simple sym-

bolic derivations into basic logical reasoning — as a result, they perform relatively well on True/False

problems and some of the simpler general Q&A problems. However, careful assessments by domain ex-

perts have also illuminated the limitations of these LLMs, particularly noting the necessity for improved

reasoning and explanatory capabilities before they can be used for practical problems in real-world ap-

plications. Once the problems require more detailed analysis of the underlying physical processes (e.g.,

the bus fleet size problem 10.55), or when they require a deeper understanding of subtle concepts or

statements (e.g., the space-mean speed problem 6.13(b), or the rolling resistance problem 4.5), LLMs

seem to face notable difficulties.

Looking ahead, we feel that future research on LLM applications in transportation engineering

should focus on (i) enhanced pre-training, finetuning, and evaluations with expanded transportation

systems problem datasets, especially with more general Q&A problems in additional subject areas and

at more advanced (senior or graduate) levels; (ii) systematic study of domain-specific prompting and

in-context learning for solving more complex transportation engineering tasks, possibly by holistically

categorizing basic solution steps or approaches for various transportation problems and passing those

high-level information to LLMs; (iii) developing reliable LLM agents with strong tool-use abilities such

as leveraging external coding tools or specialized modeling or simulation platforms for sub-domains

like geometric design, network analysis, traffic management, and demand modeling; (iv) improving

LLM reasoning for transportation engineering via development and integration of advanced search algo-

rithms (e.g., Tree-of-Thoughts (Yao et al., 2024), Reasoning-via-Planning (Hao et al., 2023), etc.) with

domain knowledge; and (v) exploring the potential use of LLMs in interdisciplinary areas that connect

transportation engineering to other related domains such as urban and regional planning, other civil en-

gineering subfields3 (e.g., hydrology, construction), and other engineering disciplines (e.g., mechanical

engineering, electrical engineering, computer science), and broadly, other sciences (e.g., social science,

3For instance, LLMs have already been recently used in areas such as water engineering (Xu et al., 2024).
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climatology). By advancing research in these directions, we can further harness AI’s capabilities to help

human experts transform the future transportation engineering, ultimately leading to smarter, safer, and

more sustainable transportation systems.
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